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Abstract

A grid generation andflow solution algorithm for the Euler equations

on unstructured grids is presented. The grid generation scheme, which

utilizes Delaunay triangulation, generates the field points for the mesh
based on cell aspect ratios and allows clustering of grid points near solid

surfaces. The flow solution method is an implicit algorithm in which the
linear set of equations arising at each time step is solved using a Gauss-

Seidel procedure that is completely vectorizable. In addition, a study
is conducted to examine the number of subiterations required for good

convergence of the overall algorithm. Grid generation results are shown
in two dimensions for an NACA 0012 airfoil as well as a two-element

configuration. Flow solution results are shown for a two-dimensional
flow over the NACA 0012 airfoil and for a two-element configuration
in which the solution has been obtained through an adaptation procedure

and compared with an exact solution. Preliminary three-dimensional

results also are shown in which the subsonic flow over a business jet is

computed.

Introduction

The use of unstructured grids for a solution of the

Euler equations offers several advantages over the use
of structured grids. These advantages include the

ease with which adaptive methodology can bc incor-

porated into the flow solvers and the relatively short

time to generate grids about complex configurations.

Although the overall time to generate grids about
complex configurations is much shorter for unstruc-

tured grids compared with that of block-structured

grids, the computer timc required for thc unstruc-
tured flow solvers historically has been much longer

than that of structured grids. Although unstruc-

tured flow solvers will continue to require longer com-

puter times than those of structured grids because
of indirect addressing, reecnt advances (refs. 1 and

2) make three-dimensional computations on unstruc-
tured grids more competitive with those of structured

grids.

As mentioned, the succcss of unstructured grids

mainly is due to the relative ease at which grids
can be obtained over complex configurations. Two

dominant methods of generating unstructured grids

currently exist. The first of these techniques is the

advancing-front method in which the cells that make
up the interior of the mesh are computed by marching

away from the domain boundaries (refs. 3 and 4).
This method has bccn used with success to generate

grids about many complex configurations (rcf. 5).
Further details of this technique can be found in
references 3 to 6 and the references contained therein.

The other method commonly used for genera-

tion of unstructured grids is Delaunay triangulation

(rcfs. 7 and 8), which is emphasized in the current
study. This approach t,riangaflates a given set of

points in a unique way so that the minimum angle
of each triangle in the mesh is maximized. The ad-

vantage of this technique is that the resulting meshes

are optimal for the given point distribution because

they do not usually contain many extremely skewed
cells.

The field points for generating grids using the

Delaunay triangulation approach usually arc spcci-

fled a priori by generating points about individual

components with structured grids (ref. 9), by sub-
dividing existing quadrilateral cells using a quadtrcc

cncoding method (ref. 6), or by embedding the ge-

ometry into a Cartesian grid (ref. 10). A novel ap-

proach to the generation of field points is given by
Holmes and Snydcr (ref. 11); in this approach, the

field points are generated as the triangulation pro-
cecds based on the aspect ratio and cell area of cur-

rent triangles. This technique generates grids that
are not highly skewed because new points are intro-

duced to continually reduce the cell aspcet ratios.

Unfortunatcly, grids generated in this manner gencr-

ally are too coarse to be used for obtaining accurate
flow-field solutions without adaptation.

In the present study, an approach similar to that

of Holmes and Snyder is used, and an extension is
incorporated which automatically adds new nodes

to cluster points in the regions of interest. Using

the new generator, grids that are suitable for com-

putations are efficiently generated around complex,

multibody configurations.



Many advancesalso havebeenmadein flow
solversfor obtainingflow-fieldsolutionsonunstruc-
turedgrids.Impressiveresults,inwhichsolutionsare
foundfor a wingconfigurationusinga node-based,
central-differencingschemewithmultigridto achievc
rapidconvergence,havebeenobtainedby Mavriplis
(ref. 2). In this reference,solutionson a three-
(timensionalgrid consistingof morethan 2 million
cellsareobtainedin approximately1hour.

Forupwindsolvers,Prinkct al. (ref.1)havegen-
eratedresultsfor manysteady-stateapplicationsus-
ing a cell-centered,multistagetime-steppingscheme
andRoe'sapproximateRiemannsolver(ref.12).For
unsteadyapplications,Batina(ref.13)hasdeveloped
both explicitand implicit algorithmsfor obtaining
aeroelasticapplications,andRausehet al. (ref. 14)
havecoupledsomcof thesemethodswith adaptive
meshrefinement.

In thisstudy,animplicitalgorithmforsolvingthe
Eulerequationsis described.This method,along
with thework in references13and15, is basedon
thebackward-Eulertime-differencingscheme,but it
is formulatedinamannerthatpermitsfull vectoriza-
tion. In addition,thenumberof subiterationsnec-
essaryto sufficientlysolvethelinearproblemandto
obtainthe bestconvergencerate is examined.Re-
sultsareshownfor both two-andthree-dimensional
calculations.

The author acknowledgesDaryl Bonhausfor
generatingthegridaroundthebusinessjet.
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Two-Dimensional Grid Generation

Delaunay Triangulation

The foundationof the proposedgrid generation
procedureis theDelaunaytriangulationmethodde-
scribedin detail in reference7. In this technique,a
setof pointsis triangulatedby insertingeachpoint,
oneat a time, into a currenttriangulationsothat
novertexfromonetrianglelieswithin thecircumcir-
eteof anyothertriangle.Theprocedureis initiated
by first identifyingall thecellsthat havea eircum-
circleenclosingthepoint to be inserted.An exam-
pleis shownin figure1; in this figure,thepoint to
beinsertedlieswithin thecircumcircleof twotrian-
gles.TheDelaunaycavity,shownin figure2, then
is formedfrom theunionof all the trianglesidenti-
fiedpreviously.At this stage,a newtriangulation
ismadeby simplyconnectingthenewpoint to each
of thenodeslyingon theboundaryof tile Dclaunay
cavity,asdepictedin figure3.

Figure1.Identifyingcellsbrokenbyintroducingnewpoint.

To generate grids about arbitrary two-
dimensionalconfigurations,an initial triangulation
consistingof a squaredividedinto twotrianglesis
formedfirst. Thissquarehasfourcornerpointslo-
catedasufficientdistancefromallsolidsurfaces.The
pointsthat definethesolidsurfacesthenareinserted
usingBowyer'salgorithm(ref.7), followedbya pre-
determinednumberof far-fieldpointsthat are lo-
catedin acircularpatternwhichis aspecifiedradius
fromthecenterof thebodies.Thecellsthat makeup
theinteriorof thebodythenareidentifiedaccording

Figure2. Delmmaycavity.

Figure3. Reconnectionofgridafterinsertingnewpoint.
to whetherthecenterof eachcell is locatedinsideor
outsideoneof tile bodies.

After this initial phaseof theprocess,a loopis
conductedoveralltheceils,andanewpointis imme-
diatelyintroducedat thecenterof thecircumcircleof
anytrianglethat hasanaspectratio (definedasthe
ratioof thecircumcircleradiusto twicethc in-circlc
radius)exceedinga predeterminedtoleranceof ap-
proximately1.5.Thesurfaceintegrityis maintained
by rejectinganypoint that wouldresultin breaking
the cellsthat makeup the airfoil interior (ref. 8).
Notethat whena cellaspectratio is largerthanthe
tolerance,the newpoint is immediatelyaddedinto
the existingtriangulation. This additionprevents
duplicatepointsfrombeingaddedwhentwotriangles
havepointsthat definethesamecireumcircle.
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hnmediatelyaddingpointsin this mannerelim-
inatesthe searchingthat is otherwisenecessaryto
identifythefirst triangle,whichisbrokenbytilead-
ditionof thecurrentpoint.Theeliminationispossi-
blebecausethecellthat hasanaspectratiogreater
than thetolerancewill alsocorrespondto oneof the
triangleswhichformstile Delaunaycavity.Because
nosearchingisrequired,thecomputertimenecessary
to generatethe fieldpointsin this manneris small.
Thisadditionof newpointsis similarto that of the
methodusedin reference11in whichnewpointsare
introducedbasedonboththecellareaandtheaspect
ratio.

An exampleof thisprocessis shownin figures4
through9 for a samplegrid aroundanNACA0012
airfoil. Theairfoilsurfaceisdefinedwith 200points
alongthe surfaceand32pointsplacedaroundthe
outerboundary.Notethat the outerboundaryis
placedcloseto the airfoil for illustrativepurposes,
thusallowingtheentiregrid to be seen.Figure4
showsthe initial triangulationin which only the

Figure5. SamplegridaroundNACA0012afterinsertingone
point.

surfacepointsandthe outerboundarypointshave
beenincluded;thistriangulationhascellswithaspect
ratiosashighas160.

-\

\

/

A

Fig_:;nd[sSample grid around NACA 0012 after inserting two

The final grid obtained by adding field points in

Figure ,l. Initial sample grid around NACA 0012.

New points now are introduced at the center of

the circumcircle of any cell that has an aspect ratio

exceeding 1.5. Figures 5 to 8 show a few of the

intermediate triangulations after inserting the first,

second, third, and fourth points, respectively.

this manner is shown in figure 9. This grid, which
consists of 1328 nodes, 3748 faces, and 2420 cells,

has a maximum aspect ratio of 1.495. Although all

the resulting cells arc nearly equilateral, the grids
generated with this technique are coarse a short
distance from the airfoil and are not sufficient for

accurate computations. Therefore, increasing the

grid density in the vicinity of the airfoil is necessary.



Figure7.SamplegridaroundNACA0012afterinserting
threepoints.

Figure8.SamplegridaroundNACA0012afterinsertingfour
points.

Extensionsfor Clustering Mesh Points

To add new points in the vicinity of the airfoil,
a value is first assigned to each existing cell; this

value is the product of the cell area and a weighting
flmction that decreases as the distance from the cell

center to a solid surface increases:

¢(A, d) = A x f(d) (1)

In this equation, d is the distance from the cell center
to the nearest node that lies on a solid boundary.

Figure 9. Final sample grid around NACA 0012 with all

ea_peet ratios <1.5.

This variable will be used to add subsequent points

in cells in which the deviation of ¢ from the average is

larger than the standard deviation. For this reason,

the average and standard deviations of this variable

are first computed:

1 N

4=1

(2)

I N

E ($ -- ¢_)2

i=1 (3)
or: N

A list of new points that will bc inserted into the ex-

isting grid then is constructed from the cell centers

of all triangles in which the local value of ¢(A,d)

exceeds that of tile average plus the standard devi-
ation, i.e., whenever ¢i >- ¢ + a. This list of new

points then is introduced as before, using Bowyer's

algorithm. By adding new points in this manner, the
function ¢ tends to be evenly distributed over the

grid, and new points are added first at larger cells

near the body. Few, if any, new points are introduced
far from the solid surfaces.

The weighting function used in the current study

is given by
1

f(d) = 1 + eZ(d-do) (4)

In this equation, do is a distance that is measured
from the airfoil surface; clustering will occur
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predominantlyin regionswherethedistanceto the
airfoil surfaceis lessthan do. A plot of this func-

tion is shown in figure 10 for several values of fl

and do = 0.5. As seen, the transition of this func-

tion at d = 0.5 steepens as _ inercases, and the value
decreases as the distance from the airfoil increases.

Thus, the transition between clustered and nonclus-

tercd regions can be made smoothly, and the dis-
tance away from the airfoil in which clustering occurs

is also controlled. Note that because this procedure

only adds one point at the center of each triangle, the

amount of clustering for the final grid (i.e., how many
new points arc introduced) is increased by repeat-

ing this procedure several times. In practice, three

or four repetitions in which 13 is gradually increased

lead to grids with good clustering near the surface
of the airfoils, and a reasonably smooth transition

region between the clustered and nonclustered areas
is obtained. Further enhancements to this procedure

may be achieved by varying the weighting function.

1.6

1.2

f .8

13=5
13=1o
13= 20

.4.- "_

\ \

0 .4 .8 1.2 1.6

d

Figure 10. Weighting fimetion for several values of 5' and
do = 0.5.

The final step is to smooth the grid with a simple

Laplacian-type procedure as given in reference 16.

This process is achieved by repositioning the mesh

points according to

+1= x? + E (=k-
k=l

n

= y? + E (vk- w)
k=l

(5)

where aJ is a relaxation factor and the sum is obtained

over all edges meeting at node i. For the current

6

study, a relaxation factor of 0.2 is typically used, and

100 to 200 iterations of smoothing are performed.

The final sample _id for the NACA 0012 airfoil

is shown in figure 11. This grid, which demonstrates

the success of the clustering procedure, is a clear
improvement to the grid previously showm in figure 9.

Figure 11. Final sample grid around NACA 0012.

Although the techniques just outlined currently

have not been implemented in three dimensions, no

readily apparent implementation obstacle exists.

Euler Solver

The Euler flow solver is an implicit, cell-centered,

upwind-differencing code in which the fluxes on the
cell faces are obtained using the Van Leer flux-

vector splitting technique (ref. 17). The solution
at each time step is updated using an implicit algo-

rithm that uses the Iincarized, backward-Euler, time-
differencing scheme. At each time step, the linear

system of equations is solved with a subiterative pro-

cedure in which the mesh cells are divided into groups

(or colors) so that no two cells in a given group share

a common edge. For each subiteration, the solution
is obtained by solving all the unknowns in a given

color before proceeding to the next color. Beeausc

the solution of the unknowns in each group depends

on those from previous groups, a Gauss-Seidel-type
procedure that is completely veetorizable is obtained.

Governing Equations

The governing equations are the time-dependent
Euler equations, which express the conservation of



r.
=

=

mass, momentum, and energy for an inviscid gas.

The equations are given by

0Q 1 /-_0_ + A F-fi dft = 0 (6)
fl

where the state vector Q and the flux vectors F • fi

are given as

pVu+%p
+ | (8)

(E+p)U J

and U is the velocity in the direction of the outward

pointing unit normal to a cell face

U = fixU + fiyV (9)

The equations are closed with the equation of state

for a perfect gas

.o)

Flux-Vector and Residual Calculation

For tile computations shown in this report, the

flux vectors in equation (8) are upwind differenced

using the flux-vector splitting technique of Van Leer

(ref. 17). These flux vectors are given in terms of
the Mach number normal to the cell face, defined as

]tin = U/a. For supersonic flow in the direction of a

face normal (]tin _> 1)

F+= .fi =F F-= .fi =0 (11)

whereas for supersonic flow in the opposite direction

of the face normal (Mn _< -1)

F- = .fl =F F+= .fi =0 (12)

For subsonic flow (IMnl < 1), the fuxes are split

into two contributions, F+ and F-, such that the

Jacobian matrix of _'+ has positive eigenvalues and

the Jacobian matrix of F- has negative eigenvalucs.

The split fluxes are given by

:t=

f, ..... {[_ (-U ± 2_)/_] + _} (13)

{[fig(-U+2a)/_] +v}f_ a._s

felnergy

where
± = (M. + 1)2/4 (14)

and

-t= £ [(1-_)U2=t=2(_-1) Ua + 2a2 u22v2 ]fenergy = ft_a_s 3, 2 -- 1 + --

(15)
The steady-state residual, given by

R= de (16)

is calculated using a trapezoidal integration by sum-
ming the fluxes over each of the faces that make up

the control volume. For example, the residual in a

triangular cell is calculated as

i=3

R:-/F.fid_: E IF+ (Q_-) + F- (Q+)]/i (17)

ft i=1

Here F_-(Q_:) represents the split fluxes on the cell

faces formed from an upwind interpolation of the
data to each face. For first-order accurate differenc-

ing, the data on the face are obtained from the data
in the cells that lie on each side of the cell face. For

higher order differencing, the primitive variables are
extrapolated to the cell faces using a Taylor series ex-

pansion about the center of the cell so that the data

on the face are given by

qfacc = qcentcr + vq' r (18)

where r is the vector extending from the center of
the cell to the center of the cell face.

For evaluating the gradient vq, the data first

are interpolated to the nodes using inverse distance

weighting, and the gradient then is evaluated using
Green's theorem. This interpolation method is fur-

thcr discussed in reference 18. Note that obtaining

the data at the nodes also has been accomplished

using a linear least-squares fit of the data in the sur-

rounding cells with no apparent differences observed
in the solutions obtained with either method.
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Boundary Conditions
Theboundaryconditionson thebodyaresetac-

cordingto characteristic-typeboundaryconditions
similarto thosein reference19. Thedensity,pres-
sure, and velocity componentson the body are
determinedaccordingto

Pbody = Pref q- Prefaref (hxU + hyV)

Pbody

Ubody

Vbody

(19)

= Prcf + (Pbody- Pref)/ar2ef (20)

----- ltref -- fx (fx u + fyV)ref (21)

=- Vref -- ny (fix// -I- nyt')rcf (22)

from which the energy is set using the equation of

state given in equation (10). The reference conditions
for equations (19) through (22) are taken from the
first cell in the grid interior.

Because an implicit scheme is used in this study,

implicit boundary conditions are implemented by
assuming that

APbody = APref (23)

A (P_')body-- A (pU)ref - % (;*xA (p_) + ¢OA (p@ _of (24)

(p,%o_y= _ OV)r_f- _y (_,x_(p_)+ _ 0_,)),_,r (25)

AEbody = AEre f (26)

In this manner, the matrix entries that correspond

to cells lying adjacent to a solid surface can be easily
modified to include the boundary influence.

For the far field, explicit boundary conditions are
used in which the velocity and speed of sound are

obtained from two locally one-dimensional Riemann

invariants given by

n ± = u+ 2a (27)
7-1

These invariants are considered constant along char-
aeteristics that are defined normal to the outer

boundary. For subsonic conditions at the bound-

ary, R- can be evahmtcd locally from free-stream

conditions outside the computational domain, and
R + is evaluatcd locally from the interior of the do-

main. The local normal velocity and speed of sound

on the boundary are calculated using thc Riemann
in_ariants

Ubo,t,,dary = _ (n + + n-) (28)

aboundary _ 7- 14 (R+ - R-) (29)

8

The Cartesian velocities are determined on the

outer boundary by decomposing the normal and

tangential vclocity vectors into components that
yieht

//'boundary : Uref + fx (aboundary -- aref )
(30)fVbound  = + (Ubo naary-

where the subscript ref represents values obtained
from one point outside the domain for inflow and

from one point inside the domain for outflow.

Tile entropy is determined by using the value

from either outsidc or inside the domain, depending
on whether the boundary is an inflow or outflow

boundary. Once the entropy is known, the density on

the far-field boundary is calculated from the entropy
and speed of sound as

t

= (a2oundary _

Pbo,,ndary \ .,/Sboundary/ (31)

The energy then is calculatcd from the equation of
state.

Time Advancement Schemes

Implicit algorithms. The starting point for
the time advancement algorithm is the linearized,

backward-Euler, time-differencing scheme that yields
a system of linear equations for the solution at each

step given by

[A]" {AQ} = {R}" (32)

where

[AI _ ---AI OR n
= At + _ (33)

The solution of equation (32) can, in principle, bc

obtained by a direct inversion of lAin; this solution

has the advantage of a resulting scheme that becomes

a Newton iteration in the linfit as the time step
approaches infinity if the exact linearization of R _

is used in forming [A] n. Although this technique

is quite successful in two dimensions (rcf. 20), the

solution at each time step requires a great deal of

memory to store the components of [A] n as well
as extensive computer time to perform the matrix

inversions. This approach, therefore, is currently
not very feasible for practical calculations in three
dimensions.

Because the number of operations required to
invert a matrix depends on the matrix bandwidth,



first-orderaccurateapproximationson tile left-hand
sideof equation(32)are oftenutilized to reduce
bothrequiredstorageandcomputertime.With this
simplification,theconsistencybetweentheleft- and
right-handsidesof equation(32)requiresthat first-
orderapproximationsalsobeuse(|ontheright-hand
sideto achievequadraticconvergence.However,with
first-orderapproximationsoil theleft-hand(implicit)
sideandsecond-orderapproximationson the right-
handside,thisschemeremainsstablefor largetime
steps.First-orderdifferencingof the left-handside
withhigherorderdifferencingontheright-handside,
therefore,is consideredin thepresentstudy.

A sampleconfigurationof trianglesin whichthe
cellsarerandomlyorderedisshownin figure12.The
corresponding form of the matrix [A] n is shown in
figure 13; in this figure a circle represents the nonzero
entries.

l+igure 12. Sample cell configuration.

@ @ @
@ @ @

@ @@
@ @ @

©@ @
@ @©
@ @@ @

@ @ ©
@ @ @

@ @@
@ @@

Figure 13. Form of matrix for cells in figure 12.

Although the solution of the system of equations
may be obtained through a direct inversion of [A] n,

as previously mentioned, the need for large memory

can be circumvented through the use of a variety of

relaxation schemes. In these schemes, the solution

of equation (32) is obtained through a sequence
of iterations in which an approximation of AQ is

continually refined.

To facilitate the derivation of these schemes, [A] n
is first written as a linear combination of three

matrices representing the diagonal, subdiagonal, and

superdiagonal terms, that is

[A] n = [D]n + [M] n + [NI" (34)

Tile simplest iterativc scheme for obtaining a solu-

tion to the linear system of equations is a Jacobi-

type method in which all the off-diagonal terms of

[A]n{AQ} (i.e., [M]n{AQ} + [N]'{AQ}) are taken

to the right-hand side of equation (32) and are eval-

uated using the values of {AQ} i from the previous

subiteration level i. This scheme can be represented
as

[D]n{AQ}i+1= [{R}n -[M + N]n{AQ}i]

= [{R}=-[o] _{AQy] (35)

The disadvantage of this scheme is that the se-

quence of Jacobi iterations may converge slowly. To

accelerate the convergence, a Gauss-Scidet procedure

may be employed in which values of {AQ} are used
on the right-hand side of equation (35) as soon as

they are available. An example of this scheme can
be written as

[D] {AQ} i+I = [{R}" - [M] n {AQ} i+' - [NI" {AQ} i] (36)

where the latest values of {AQ} from the subdiag-

onal terms are immediately used on tile right-hand
side of the iteration equation. A slight modification

to this algorithm in which tile latest values of {AQ}

fi'om the superdiagonal terms are used results in a

similar scheme that is given by

[D] {AQ} i+1 = [{R} n - [M] _ {£q}i - [NI" {AQ}/+1] (37)

Another variation of this algorithm can be obtained

by alternating the use of equation (36) with equa-

tion (37) so that a symmetric Gauss-Seidel-type
procedure is obtained.

Note that the algorithms given by equations (36)

and (37) can both be implemented by sweeping se-

quentially through each mesh cell and simply using

the latest values of {AQ} for all the off-diagonal
terms that have been taken to the right-hand side.

This procedure can be represented as

[D] {AQ}i+I = [{R}n - [o]n {AQ} i+J] (38)

i+1

where Q i is the most recent vahm of Q; this term

will be at the subiteration level i + 1 for the cells that



havebeenpreviouslyupdatedandat the leveli for

the cells that remain to be updated. The distinc-

tion between the algorithms in equations (36) and
(37) comes from sweeping forward through the cells

(eq. (36)) or backward through the cells (eq. (37)).

Two disadvantages of this scheme exist. The

first disadvantage is that this process is not easily
vectorized because the solution of each point must

be obtained before proceeding to the next point.

The second disadvantage is that although the off-
diagonal terms may be updated and immediately
used on the right-hand side, the solution of the

next unknown may or may not depend on previously
determined quantities. For example, as can be seen

from figure 12, when solving for the second unknown
using equation (36), the updated value of tile solution

at point 1 is not used; therefore, the solution for point
2 remains a Jacobi step.

Note that for structured grids in which the cells

are ordered in a natural manner (e.g., left to right
and top to bottom), the latest information will im-
mediately be used for the calculation of the next un-

known. This occurs because the ordering of the cells

produces a banded matrix with terms grouped along
the diagonal. The fact that the latest-obtained data

are not necessarily used for updating information in

unstructured grids is because of the random ordering
of the cells.

An improvement to the scheme just described,

therefore, can be obtained by simply renumbering the
cells to group terms along the diagonal of tile matrix.

In this manner, the solution of each point will tend
to ensure that previously updated information from

the surrounding cells is used as soon as it is available.

An example of this is shown in figure 14 where tile

same cells used in figure 12 are simply renumbered

from bottom to top and left to right. The resulting
form of the matrix, shown in figure 15, shows that

the grouping along tile diagonal is greatly improved.

The ordering of tile cells in this way should result in
fastcr convergence of the linear problem than a ran-

dom ordering of cells. Although the ordering of the

cells in this example groups unknowns along the di-
agonal, other procedures such as the Cuthill-McKee

method described in reference 21 are more effective

for general configurations. Again, note that several

variations of this scheme can be obtained by using

various combinations of equations (36) and (37). An
important disadvantage of this scheme, however, is
that the contribution of the off-diagonal terms to

the right-hand side of equation (38) still cannot be
vectorized.
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Figure 14. Sample cells.
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Figure 15. Form of matrix for cells in figure 14.

The Jacobi, Gauss-Seidel, and symmetric Gauss-
Seidel schemes just described have all been used

in practice by various researchers. An example of
research that used these schemes to solve the Euler

equations for transonic flow over a circular arc in a

channel is given in reference 15. In this reference,
the symmetric Oauss-Seidel scheme was shown to

exhibit the fastest convergence rate of the three

schemes. The successflfl use of a symmetric Gauss-
Seidel algorithm for transonic flow over airfoils is

described in reference 22; in this work, grouping the

unknowns along the diagonal is enhanced by sorting
them according to the x-coordinate direction.

Vectorization of Gauss-Seidel. The number-

ing of cells used in the current study is shown in

fignlre 16. The ordering is obtained by grouping cells
so that no two cells in a given group share a common

edge. The resulting matrix form for [A] is given in
figure 17. Note that for this example, only two groups

are formed; in practice, at most, four groups will
be formed for two-dimensional calculations and five

groups are formed for three-dimensional calculations.

The first group for the present example consists of the

cells numbered 1 through 6, and the second group
contains cells numbered 7 through 12.

The solution scheme, which can be written as

before using equation (38), is implemented by solving

E!

!



Figure 16. Sample cells.

® @@
@ © ©
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0 0 0

0 0 0
O0 0

OO 0 O
O0 0

O0 0

Figure 17. Form of matrix for cells in figure 16.

for all the unknowns in a group at a time. The
cells in the first group arc solved using a Jacobi-type

iteration, and the cells in all the subsequent groups

are obtained by using the most recently updated

values of {AQ} fi'om the off-diagonal contributions.
In this way, a Gauss-Scidel-type scheme is obtained

which is easily implemented and is fully vectorized.

Note that a symmetric Gauss-Seidel-type procedure
is not necessary and is not used; stability is achieved

as long as the matrix [A] maintains block diagonal

dominance that occurs when first-order differencing

is used on the implicit side of the equation (ref. 23).

In these discussions, the exact number of sub-

iterations required to sufficiently converge the linear

problem (eq. (32)) has not been specified. The num-
ber of subiterations used for each global time step

has been determined through numerical experiments

that are presented in the results.

Time Step Calculation

To enhance the convergence to a steady state,

local time stepping is used. The time step calculation
for each cell is given by

L

At = CFL v/u2 +v2+ a (39)

where L is a length scale for the cell. This length

scale is defined as the area of the cell divided by the

perimeter.

Results

Flow-field calculations for several demonstration

cases are presented. The first case is for an
NACA 0012 airfoil at a free-stream Mach num-

ber of 0.8 and an angle of attack of 1.25% The
grid has an outer boundary placed approximately

50 chord lengths away fi'om the body; this grid con-

sists of 3624 nodes, 7012 cells, and 10636 faces. A

near-field view of the grid is shown in figure 18.

Figure 18. Near-field view of grid around NACA 0012 airfoil.

The pressure coefficient distribution along the
airfoil surface is shown in figure 19. As seen, a

moderately strong shock is captured on the upper

surface of the airfoil, and a weaker shock is captured
on the lower surface. Also, note that because a flux

lirniter has not been used for the present calculation,

an "overshoot" is evident ahead of the upper-surface

shock. The corresponding Mach number contours for
this case are shown in figure 20.

For this calculation, the residual of the continu-

ity equation has been reduced to "machine zero" in
approximately 400 global iterations, as seen in fig-

ure 21. The CFL number began at 50 and was

linearly ramped to 200 throughout 100 iterations.
The CFL numbers used for the current calculation

may not be optimal for the present case, but they
give reasonably good convergence for a wide range

11
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Figure 19. Pressure dMribution for NACA 0012 airfoil.
Moc = 0.8; a = 1.25°.

Figure 20. Mach number contours for NACA 0012 airfoil.
M_c = 0.8;a = !-25".

of test problems and grid densities. The memory re-

subiterations performed. For the current research,

this number is based on results of a numerical study
in which the number of subiterations has been var-

ied for a wide variety of CFL numbers. A typi-

cal plot of the computer time required to obtain a
four-order-of-magnitude reduction in the residual is

shov_'n in figure 22. This plot clearly indicates that

15 to 20 subiterations for each global iteration pro-

duce the fastest convergence rate. A similar study
has been conducted on other grids and other cases

with similar results. For this reason, between 15 to
20 sub- iterations are used for all cases shown in this

report. Although this number of subiterations has

proved adequate for the current work, further work

in optimizing this parameter may prove beneficial.
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Figure 21. Convergence history for NACA 0012 airfoil.

Moc = 0.8; c_= 1.25 °.

A comparison of convergence rates obtained with

both implicit and explicit boundary conditions on the

airfoil surface is shown in figure 23. As seen, the use
of implicit boundary conditions improves the rate of

convergence through the first several orders of mag-

nitude. In addition, the use of explicit boundary con-

ditions impedes the convergence past approximately
seven orders of magnitude. This behavior has been

observed for a variety of other cases that are not pre-

quircd corresponds to approximately 180 words per sented. Note that the use of explicit boundary con-
cell. For each global iteration, 20 subiterations have
been used to solve the linear system each time. This

process results in a computational rate of approx-

imately 60 #sec per cell per global time step on a

CRAY YMP using a single processor. This compu-
tational rate, however, depends on the number of

12

ditions seems to lead to a more robust code because

ramping of the CFL number has not been necessary

when explicit boundary conditions have been used.

For most calculations in this study, implicit bound-

ary conditions have been used after five iterations,

and the CFL is ramped from 50 to 200.
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Figure 22. Computer time for four-order-of-magnitude re-

duction in residual for NACA 0012 airfoil. 3,1_ = 0.8;
c_ = 1.25°.
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Figure 23, Comparison of convergence rates for implicit

and explicit boundary conditions for NACA 0012 airfoil.
hlr_ = 0.8; a = 1.25°.

The next case presented is for a two-clement air-

foil in which an exact incompressible solution exists

(ref. 24). The initial grid used for this calculation is

shown in figure 24; this grid consists of 1556 points,
2882 cells, and 4439 faces. The main element and flap

have 100 points each along the surface. Note that for
this calculation, no elustering of cells has been per-
formed near tile surfaces because the final solution is

obtained through an adaptation procedure described

in reference 25. The pressure distribution calculated

at a free-stream Mach number of 0.2 using this ini-
tial grid is shown in figure 25. As seen, the coarse

grid yields results that agree poorly with the exact
solution.

As previously mentioned, a solution also has been

obtained by adapting the grid to the solution. Adap-

tation is achieved by first identifying a list of cells

that require refinement. New points, which are

located at the center of each of these cells, then
are introduced into the existing triangulation using

Bowyer's algorithm for the Delaunay triangulation,

and the solution is interpolated to the new grid for

use in restarting the solution. Because the present

flow field does not contain discontinuities, the list
of new cells is identified by flagging all tile cells in

which the undivided velocity gradient exceeds that

of tile average plus the standard deviation of all the

cells in the grid (refs. 25 and 26).

Figure 24. Grid around two-clement configuration.

The final grid, shown in figure 26, consists of 3165

nodes, 6332 cells, and 9190 faces, with 148 nodes on
the surface of the main clement and 128 nodes on

the flap. The pressure distribution obtained on this

grid is shown in figure 27. The agreement with the
exact solution is improved over that in figure 25. In

addition, the calculated lift of 2.026 compares well

with the exact value of 2.0281 given in reference 24.

The present algorithm also has been implemented

in three dimensions with the preliminar): results sub-
sequently shown. The case shown is for a business jet

at M_c = 0.2 and a ----3 °. The grid used for the com-
putations has been generated using the advancing

13
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Figure 25. Pressure distribution over two-element configura-

tion using initial grid.

Figure 26. Grid obtained for two-elernent airfoil after adap-
tation.

front-type grid generation described in reference 27;
this grid consists of 27 191 nodes, 144 100 cells, and

294 109 faces. The surface grid for this computa-
tion, which consists of ll 582 triangles, is shown in

figure 28.

This case has been run at a constant CFL number

of 300 with 15 subiterations; tile convergence history

is shown in figure 29. As seen, the residual is re-
duced between two and three orders of magnitude

in 100 global iterations, at which point the conver-
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Fig_lre 27. Solution obtained for two-element airfoil after
adaptation.

Figure 28. Surface grid for business jet.

gence rate degrades. After 200 iterations, a resid-

ual reduction of slightly greater than three orders of

magnitude is obtained. This "tailing off' behavior
has not been observed in two dimensions when im-

plicit boundary conditions are used, but it may be
caused by the low free-stream Mach number or the

close proximity of the outer boundary that extends

approximately 10 body lengths ahead of and behind
the airplane (but only about two body lengths above

and below). Note that the "tailing off' of the residual

may aIso indicate that the high-frequency errors in

the scheme have been effectively reduced and that

the low-frequency errors have begun to dominate.
The use of a multigrid to rapidly eliminate these

low-frequency errors should enhance the convergence.

!

=



i

°i\
'0°"21

-4 ,

-6 , . I ____ _ • , I

0 100 200 300

Iterations

Figure 29. Convergence history for Lear jet.
a = 3.0 °.

Moo = 0.2;

A pressure distribution comparison at the

q = 0.44 span station is made in figure 30 with the

method described in reference 1. In figure 30, tile re-

suits referred to as FUN3D are those of the present

study and USM3D refers to those obtained using the
computer code of reference 1. (This computer code

is an upwind finite-volume code that uses multistage,

time-stepping and flux-difference splitting.) As seen,

the comparison between the two codes is reasonably
close, and the main discrepancies occur at the lead-

ing edge. These differences are due to slight differ-

ences in the computation of the boundary fluxes and

because the computations with USM3D use Roe's

flux-difference splitting (ref. 12) instead of flux-vector
splitting.

Tile current implementation of this code ill three

dimensions requires approximately 87 words of main
memory per cell and about 50 words per face of a

solid-state device (SSD). The computational rate on

a CRAY YMP is approximately 140 #sec per cell

per iteration, based on 15 subiterations per global
time step. Note that this timing includes bottl user

time and system time; without the use of SSD,

the computational rate improves to approximately

92 ttsec per cell per iteration because of a significant
decrease in system time.

-1.2

-.6

cp

O

@_

o FUN3D

, USM3D

Oo ®o o o
o® 60 6 0 6 o 6o _ O Oo oo

O_ oo oaoo_

.6

®

1.2 , _[ .... L__. 1 L [ I __]

0 .25 .50 .75 1.00

x/c

Figure 30. Comparison of surface pressure distribution. Moc = 0.2; a = 3.0°; r/= 0.44.
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Concluding Remarks

A two-dimensional grid generation procedure has

been devised which combines automatic point place-

ment with Dclaunay triangulation to efficiently pro-

duce good-quality unstructured meshes. This

method, which uses the Delaunay triangulation al-

gorithm of Bowyer, is based on tile work of Hohnes.

The present algorithm improves the previously cited

work by allowing tile automatic generation of new

mesh points so that tile clustering of points near sur-

faces is achieved.

A flow solver that is implicit and can be com-

pletely vectorized is also developed in both two and

three dimensions. This scheme is based on backward-

Euler time differencing; the linear problem arising

at each step is solved by using several iterations of

a Gauss-Seidel-tytm procedure. In this method, the

unknowns are divided into groups so that no cells in

a given group share an edge; therefore, all the cells in

a group are independent of each other so that their

solutions can be obtained sinmltaneously.

The effect of the number of subiterations on the

convergence rate (based on computer time) is also

examined. Between 15 to 20 subiterations per global

time step produce the best results. In addition,

the use of implicit boundary conditions improves the

convergence rate of the current algorithm.

Results are shown for a two-dimensional flow over

an NACA 0012 airfoil and a two-element airfoil in

which the solution is obtained with adaptation. For

the two-element configuration, comparisons are made

with the exact solution, and excellent results are

obtained by adaptation. For three dimensions, the

calculation of subsonic flow over a business jet is

demonstrated.

NASA Langley Research Center

Hampton, VA 23665-5225

February 20, 1992
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